A Method for Generation Phage Cocktail with Great Therapeutic Potential
نویسندگان
چکیده
BACKGROUND Bacteriophage could be an alternative to conventional antibiotic therapy against multidrug-resistant bacteria. However, the emergence of resistant variants after phage treatment limited its therapeutic application. METHODOLOGY/PRINCIPAL FINDINGS In this study, an approach, named "Step-by-Step" (SBS), has been established. This method takes advantage of the occurrence of phage-resistant bacteria variants and ensures that phages lytic for wild-type strain and its phage-resistant variants are selected. A phage cocktail lytic for Klebsiella pneumoniae was established by the SBS method. This phage cocktail consisted of three phages (GH-K1, GH-K2 and GH-K3) which have different but overlapping host strains. Several phage-resistant variants of Klebsiella pneumoniae were isolated after different phages treatments. The virulence of these variants was much weaker [minimal lethal doses (MLD)>1.3×10(9) cfu/mouse] than that of wild-type K7 countpart (MLD = 2.5×10(3) cfu/mouse). Compared with any single phage, the phage cocktail significantly reduced the mutation frequency of Klebsiella pneumoniae and effectively rescued Klebsiella pneumoniae bacteremia in a murine K7 strain challenge model. The minimal protective dose (MPD) of the phage cocktail which was sufficient to protect bacteremic mice from lethal K7 infection was only 3.0×10(4) pfu, significantly smaller (p<0.01) than that of single monophage. Moreover, a delayed administration of this phage cocktail was still effective in protection against K7 challenge. CONCLUSIONS/SIGNIFICANCE Our data showed that the phage cocktail was more effective in reducing bacterial mutation frequency and in the rescue of murine bacteremia than monophage suggesting that phage cocktail established by SBS method has great therapeutic potential for multidrug-resistant bacteria infection.
منابع مشابه
Formation of therapeutic phage cocktail and endolysin to highly multi-drug resistant Acinetobacter baumannii: in vitro and in vivo study
Objective(s): Phage therapy is a potential alternative treatment for infections caused by Acinetobacter baumannii, a significant nosocomial pathogen, which has evolved resistance to almost all conventional antimicrobial drugs in poor hygiene and conflicts areas such as Iraq. Materials and Methods: Bacteriophages were isolated to highly resistant isolates of A. baumannii to form therapeutic phag...
متن کاملControl of Pierce's Disease by Phage
Pierce's Disease (PD) of grapevines, caused by Xylella fastidiosa subsp. fastidiosa (Xf), is a limiting factor in the cultivation of grapevines in the US. There are presently no effective control methods to prevent or treat PD. The therapeutic and prophylactic efficacy of a phage cocktail composed of four virulent (lytic) phages was evaluated for control of PD. Xf levels in grapevines were sign...
متن کاملTargeting Colorectal Cancer Cell Lines Using Nanobodies; AgSK1as a Potential Target
Background: Colorectal cancer is the third most common type of aggressive cancers. Chemotherapy, surgery,and radiotherapy are the common therapeutic options for treating this cancer. Due to the adverse side-eff ects of these methods, immunotherapy is considered as an appropriate alternative therapeutic option. Treatment through the application of monoclonal antibodies is considered as a n...
متن کاملBiocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins
Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield) was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments...
متن کاملISOLATION OF LYTIC BACTERIOPHAGE AB72P AGAINST MULTI-DRUG RESISTANT ACINETOBACTER BAUMANNII ISOLATES OBTAINED FROM BURN INFECTION
Background & Aims: Acinetobacter baumannii is a gram-negative pathogen that causes a wide range of hospital-acquired infections. Due to its intrinsic traits and its remarkable abilities to quickly acquire resistance genes, it has become resistant to most antimicrobial agents and a major problem for hospitals. In recent years, application of lytic bacteriophages has been considered to eradicate ...
متن کامل